题目内容

已知F1,F2分别为椭圆C1
x2
b2
+
y2
a2
=1(a>b>0)的上下焦点,其F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF2|=
3
5

(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
OA
+
OB
OP
,求实数λ的取值范围.
(1)令M为(x0,y0),因为M在抛物线C2上,故x02=4y0,①
又|MF1|=
5
3
,则y0+1=
5
3
,②
由①②解得x0=-
2
6
3
,y0=
2
3

椭圆C1的两个焦点为F1(0,1),F2(0,-1),
点M在椭圆上,由椭圆定义,得
2a=|MF1|+|MF2|=
(-
2
6
3
-0)2+(
2
3
-1)2
=4
∴a=2,又c=1,
∴b2=a2-c2=3
∴椭圆C1的方程为
y2
4
+
x2
3
=1

(2)∵直线l:y=k(x+t)与圆x2+(y+1)2=1相切
|kt+1|
1+k2
=1,即k=
2t
1-t2
(t≠0)
把y=k(x+t)代入
y2
4
+
x2
3
=1
并整理得:
(4+3k2)x2+6k2tx+3k2t2-12=0
设A(x1,y1),B(x2,y2),则有
x1+x2=-
6k2t
4+3k2
,y1+y2=k(x1+x2)+2kt=
8kt
4+3k2

λ
OP
=(x1+x2,y1+y2
∴P(
-6k2t
(4+3k2
8kt
(4+3k2

又∵点P在椭圆上
12k4t2
(4+3k2)2λ2
+
16k2t2
(4+3k2)2λ2
=1
∴λ2=
4k2t2
4+3k2
=
4
(
1
t2
)2+(
1
t2
)+1
(t≠0)
∵t2>0,∴(
1
t2
)
2
+(
1
t2
)
+1
>1
∴0<λ2<4
∴λ的取值范围为(-2,0)∪(0,2)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网