题目内容
【题目】(本题满分12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ)能,或.
【解析】
试题分析:(1)设直线 ,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;
(2)第一步由 (Ⅰ)得的方程为.设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.
试题解析:解:(1)设直线 ,,,.
∴由得,
∴,.
∴直线的斜率,即.
即直线的斜率与的斜率的乘积为定值.
(2)四边形能为平行四边形.
∵直线过点,∴不过原点且与有两个交点的充要条件是,
由 (Ⅰ)得的方程为.设点的横坐标为.
∴由得,即
将点的坐标代入直线的方程得,因此.
四边形为平行四边形当且仅当线段与线段互相平分,即
∴ .解得,.
∵,,,
∴当的斜率为或时,四边形为平行四边形.
练习册系列答案
相关题目
【题目】某商家对他所经销的一种商品的日销售量(单位:吨)进行统计,最近50天的统计结果
如下表:
日销售量 | 1 | 1.5 | 2 |
天数 | 10 | 25 | 15 |
频率 | 0.2 |
若以上表中频率作为概率,且每天的销售量相互独立.
(1)求5天中该种商品恰好有两天的销售量为1.5吨的概率;
(2)已知每吨该商品的销售利润为2千元,表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.