ÌâÄ¿ÄÚÈÝ
16£®Ä³Æ¤Ð¬³§´Ó½ñÄê1Ô·ݿªÊ¼Í¶²ú£¬²¢ÇÒÇ°4¸öÔµIJúÁ¿·Ö±ðΪÈç±íËùʾÔÂ·Ý | 1 | 2 | 3 | 4 |
²úÁ¿£¨ÍòË«£© | 1.02 | 1.10 | 1.16 | 1.18 |
·ÖÎö ·Ö±ð´úÈëÂú×ãÌâÒâµÄµãµÄ×ø±êÇó³öÁ½¸öº¯ÊýÖеÄδ֪³£Êý£¬½ø¶ø±È½ÏÎó²î¼´µÃ½áÂÛ£®
½â´ð ½â£ºÉèy=a$\sqrt{x}$+b£¬´úÈëA¡¢DÁ½µã×ø±ê¿ÉÖª£º
$\left\{\begin{array}{l}{1.02=a+b}\\{1.18=2a+b}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=0.16}\\{b=0.86}\end{array}\right.$£¬
¡ày=0.16$\sqrt{x}$+0.86£¬
´úÈëB¡¢CÁ½µãºá×ø±ê¿ÉµÃ£ºyB=$0.16\sqrt{2}+0.86$¡Ö1.09£¬
yC=$0.16\sqrt{3}+0.86$¡Ö1.14£¬
·Ö±ðÓëʵ¼ÊÎó²îΪ0.01¡¢0.02£»
Éèy=abx+c£¬´úÈëA¡¢B¡¢CÈýµã×ø±ê¿ÉÖª£º
$\left\{\begin{array}{l}{1.02=ab+c}\\{1.10=a{b}^{2}+c}\\{1.16=a{b}^{3}+c}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=-\frac{32}{75}}\\{b=\frac{3}{4}}\\{c=\frac{67}{50}}\end{array}\right.$£¬
¡ày=-$\frac{32}{75}$•$£¨\frac{3}{4}£©^{x}$+$\frac{67}{50}$£¬
´úÈëDµãºá×ø±ê¿ÉµÃ£ºyD=-$\frac{32}{75}$•$£¨\frac{3}{4}£©^{4}$+$\frac{67}{50}$=1.205£¬
Óëʵ¼ÊÎó²îΪ0.025£»
±È½ÏÉÏÊö2¸öÄ£Ä⺯ÊýµÄÓÅÁÓ£¬¼ÈÒª¿¼Âǵ½Ê£ÓàµãÎó²î×îС£¬ÓÖÒª¿¼ÂÇÉú²úµÄʵ¼ÊÎÊÌ⣬±ÈÈçÔö²úµÄÇ÷ÊƺͿÉÄÜÐÔ£¬¿ÉÒÔÈÏΪy=0.16$\sqrt{x}$+0.86×î¼Ñ£¬Ò»ÊÇÎó²îÖµ×îС£¬¶þÊÇÓÉÓÚн¨³§£¬¿ªÊ¼Ëæ׏¤È˼¼Êõ¡¢¹ÜÀíЧÒæÖð½¥Ìá¸ß£¬Ò»¶Îʱ¼äÄÚ²úÁ¿Ã÷ÏÔÉÏÉý£¬µ«µ½Ò»¶¨Ê±ÆÚºó£¬É豸²»¸üУ¬ÄÇô²úÁ¿±ØȻҪÇ÷ÓÚÎȶ¨£¬¶øΪy=0.16$\sqrt{x}$+0.86Ç¡ºÃ·´Ó³ÁËÕâÖÖÇ÷ÊÆ£¬Òò´ËÑ¡ÓÃΪy=0.16$\sqrt{x}$+0.86±È½Ï½Ó½ü¿Í¹Ûʵ¼Ê£®
µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | 2 | B£® | 4 | C£® | 8 | D£® | $\frac{17}{2}$ |
A£® | 0⊆{0} | B£® | 0¡Ê{0} | C£® | 0={0} | D£® | 0∉{0} |