题目内容

【题目】已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+ px﹣p+1=0(p∈R)两个实根. (Ⅰ)求C的大小
(Ⅱ)若AB=3,AC= ,求p的值.

【答案】解:(Ⅰ)由已知,方程x2+ px﹣p+1=0的判别式:△=( p)2﹣4(﹣p+1)=3p2+4p﹣4≥0, 所以p≤﹣2,或p≥
由韦达定理,有tanA+tanB=﹣ p,tanAtanB=1﹣p.
所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,
从而tan(A+B)= =﹣ =﹣
所以tanC=﹣tan(A+B)=
所以C=60°.
(Ⅱ)由正弦定理,可得sinB= = =
解得B=45°,或B=135°(舍去).
于是,A=180°﹣B﹣C=75°.
则tanA=tan75°=tan(45°+30°)= = =2+
所以p=﹣ (tanA+tanB)=﹣ (2+ +1)=﹣1﹣
【解析】(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥ ,由韦达定理,有tanA+tanB=﹣ p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)= ,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB= = ,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣ (tanA+tanB)的值.
【考点精析】解答此题的关键在于理解两角和与差的正切公式的相关知识,掌握两角和与差的正切公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网