题目内容
【题目】在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式及数据:K2=.
【答案】(1)
优秀 | 非优秀 | 总计 | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 75 | 105 |
; (2)按95%的可能性要求,可以认为“成绩与班级有关系”.
【解析】
(1)根据随机抽取1人为优秀的概率为,得出优秀的总人数,从而得出乙班优秀人数,同时也能得出甲班非优秀的人数,其余数据进而可求;
(2)根据公式K2=,求出相关指数的值,然后进行对比临界值,即可得出结果.
解:(1)优秀人数为105×=30,
∴乙班优秀人数为30-10=20(人),
甲班非优秀人数为105-30-30=45(人),
故列联表如下:
优秀 | 非优秀 | 总计 | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 75 | 105 |
(2)根据列联表中的数据,
所以若按95%的可能性要求,可以认为“成绩与班级有关系”.
练习册系列答案
相关题目