题目内容

8.在数列{an}中,已知a1=$\frac{1}{4}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{4}$,bn=log${\;}_{\frac{1}{4}}$an(n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an•bn,求数列{cn}的前n项和Sn

分析 (I)由a1=$\frac{1}{4}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{4}$,利用等比数列的通项公式可得:an.利用对数的运算法则可得bn
(II)cn=an•bn=n$(\frac{1}{4})^{n}$.利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(I)∵a1=$\frac{1}{4}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{4}$,可知:数列{an}是等比数列,首项为$\frac{1}{4}$,公比为$\frac{1}{4}$,
∴an=$(\frac{1}{4})^{n}$.
∴bn=log${\;}_{\frac{1}{4}}$an=n.
(II)cn=an•bn=n$(\frac{1}{4})^{n}$.
∴数列{cn}的前n项和Sn=$\frac{1}{4}$+2$•(\frac{1}{4})^{2}$+$3×(\frac{1}{4})^{3}$+…+n$(\frac{1}{4})^{n}$.
$\frac{1}{4}$Sn=$(\frac{1}{4})^{2}+2×(\frac{1}{4})^{3}$+…+(n-1)$(\frac{1}{4})^{n}$+$n•(\frac{1}{4})^{n+1}$.
∴$\frac{3}{4}{S}_{n}$=$\frac{1}{4}+(\frac{1}{4})^{2}$+…+$(\frac{1}{4})^{n}$-n•$(\frac{1}{4})^{n+1}$=$\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$-n•$(\frac{1}{4})^{n+1}$=$\frac{1}{3}$-$\frac{4+3n}{3×{4}^{n+1}}$,
∴Sn=$\frac{4}{9}$-$\frac{4+3n}{9×{4}^{n}}$.

点评 本题考查了“错位相减法”、等比数列的通项公式与前n项和公式、对数的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网