题目内容
【题目】在直角坐标系内,点A,B的坐标分别为,,P是坐标平面内的动点,且直线,的斜率之积等于.设点P的轨迹为C.
(1)求轨迹C的方程;
(2)某同学对轨迹C的性质进行探究后发现:若过点且倾斜角不为0的直线与轨迹C相交于M,N两点,则直线,的交点Q在一条定直线上.此结论是否正确?若正确,请给予证明,并求出定直线方程;若不正确,请说明理由.
【答案】(1);(2)正确,证明见解析,直线.
【解析】
(1)设点P的坐标为,利用直接法,列方程即可求解.
(2)根据题意,可设直线的方程为:,将直线与椭圆方程联立,整理可得,利用韦达定理可得,,直线的方程与直线的方程,直线,的交点的坐标满足:,整理可得,即证.
(1)设点P的坐标为,
由,得,即.
故轨迹C的方程为:
(2)根据题意,可设直线的方程为:,
由,消去x并整理得
其中,.
设,,则,.
因直线的倾斜角不为0,故,不等于(,不为0),
从而可设直线的方程为①,
直线的方程为②,
所以,直线,的交点的坐标满足:
而
,
因此,,即点Q在直线上.
所以,探究发现的结论是正确的.
【题目】已知鲜切花的质量等级按照花枝长度进行划分,划分标准如下表所示.
花枝长度 | |||
鲜花等级 | 三级 | 二级 | 一级 |
某鲜切花加工企业分别从甲乙两个种植基地购进鲜切花,现从两个种植基地购进的鲜切花中分别随机抽取30个样品,测量花枝长度并进行等级评定,所抽取样品数据如图所示.
(1)根据茎叶图比较两个种植基地鲜切花的花枝长度的平均值及分散程度(不要求计算具体值,给出结论即可);
(2)若从等级为三级的样品中随机选取2个进行新产品试加工,求选取的2个全部来自乙种植基地的概率;
(3)根据该加工企业的加工和销售记录,了解到来自乙种植基地的鲜切花的加工产品的单件利润为4元;来自乙种植基地的鲜切花的加工产品的单件成本为10元,销售率(某等级产品的销量与产量的比值)及单价如下表所示.
三级花加工产品 | 二级花加工产品 | 一级花加工产品 | |
销售率 | |||
单价/(元/件) | 12 | 16 | 20 |
由于鲜切花加工产品的保鲜特点,未售出的产品均可按原售价的50%处理完毕.用样本估计总体,如果仅从单件产品的利润的角度考虑,该鲜切花加工企业应该从哪个种植基地购进鲜切花?
【题目】2020年新型冠状病毒肺炎(简称“新冠肺炎”)成为威胁全球的公共卫生问题,中医药在本次新冠肺炎的治疗中发挥了重要作用.研究人员对66例普通型新冠肺炎恢复期患者进行了中医临床特征分析,发现主要证型有气阴两虚证与肺脾气虚证,同时可能兼夹湿证.为研究这两种主要证型在兼夹湿证的难易上是否有差异,研究人员将湿证症状分级量化,将所有肺脾气虚证患者的量化分作成茎叶图.
(1)若量化分不低于16分,即可诊断为兼夹湿证,请参考茎叶图,完成下面列联表.
夹湿证 | 非夹湿证 | 合计 | |
气阴两虚 | 20 | ||
肺脾气虚 | |||
合计 | 66 |
(2)根据此资料,能否有99%的把握认为两种主要证型在兼夹湿证的难易上有差异?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |