题目内容
【题目】若函数满足“存在正数,使得对定义域内的每一个值,在其定义域内都存在,使成立”,则称该函数为“依附函数”.
(1)分别判断函数①,②是否为“依附函数”,并说明理由;
(2)若函数的值域为,求证:“是‘依附函数’”的充要条件是“”.
【答案】(1)①是,②不是;理由详见解析(2)详见解析.
【解析】
(1)①可取,说明函数是“依附函数”; ②对于任意正数,取,此时关于的方程无解,说明不是“依附函数”;
(2)先证明必要性,再证明充分性,即得证.
(1)①可取,则对任意,存在,使得成立,
(说明:可取任意正数,则)
∴是“依附函数”,
②对于任意正数,取,则,
此时关于的方程无解,∴不是“依附函数”.
(2)必要性:(反证法)假设,
∵的值域为,∴存在定义域内的,使得,
∴对任意正数,关于的方程无解,
即不是依附函数,矛盾,
充分性:假设,取,
则对定义域内的每一个值,由,可得,
而的值域为,
∴存在定义域内的,使得,即成立,
∴是“依附函数”.
【题目】某农科院为试验冬季昼夜温差对反季节大豆新品种发芽的影响,对温差与发芽率之间的关系进行统计分析研究,记录了6天昼夜温差与实验室中种子发芽数的数据如下:
日期 | 1月1日 | 1月2日 | 1月3日 | 1月4日 | 1月5日 | 1月6日 |
温差(摄氏度) | 10 | 11 | 12 | 13 | 8 | 9 |
发芽数(粒) | 26 | 27 | 30 | 32 | 21 | 24 |
他们确定的方案是先从这6组数据中选出2组,用剩下的4组数据求回归方程,再用选取的两组数据进行检验.
(1)求选取的2组数据恰好是相邻2天数据的概率;
(2)若由线性回归方程得到的估计数据与实际数据的误差不超过1粒,则认为得到的线性回归方程是可靠的.请根据1月2,3,4,5日的数据求出关于的线性回归方程(保留两位小数),并检验此方程是否可靠.
参考公式:,
【题目】某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价(单位:元/件)及相应月销量(单位:万件),对近5个月的月销售单价和月销售量的数据进行了统计,得到如下表数据:
月销售单价(元/件) | 9 | 10 | 11 | ||
月销售量(万件) | 11 | 10 | 8 | 6 | 5 |
(Ⅰ)建立关于的回归直线方程;
(Ⅱ)该公司开展促销活动,当该产品月销售单价为7元/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?
(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5元/件,月销售单价为何值时(销售单价不超过11元/件),公司月利润的预计值最大?
参考公式:回归直线方程,其中,.
参考数据:,