题目内容
【题目】厂家在产品出厂前,需对产品做检验,第一次检测厂家的每件产品合格的概率为,如果合格,则可以出厂;如果不合格,则进行技术处理,处理后进行第二次检测.每件产品的合格率为,如果合格,则可以出厂,不合格则当废品回收.
求某件产品能出厂的概率;
若该产品的生产成本为元/件,出厂价格为元/件,每次检测费为元/件,技术处理每次元/件,回收获利元/件.假如每件产品是否合格相互独立,记为任意一件产品所获得的利润,求随机变量的分布列与数学期望.
【答案】;详解见解析.
【解析】
分别求出某件产品第一次检验合格和第二次检验合格的概率,利用相互独立事件的概率加法公式计算即可;
先分析的所有可能取值,再计算每个取值对应的概率,最后求出数学期望.
解:设事件为“某件产品第一次检验合格”,事件为“某件产品第二次检验合格”,则,
.
所以某件产品能够出厂的概率.
由已知,若该产品不合格,则,
该产品经过第二次检验才合格,则,
该产品第一次检验合格,则,
所以的所有可能取值为,400,600.
,
,
.
的分布列为
元.
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量(百台) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程,其中,.