题目内容

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数).设直线的交点为,当变化时的点的轨迹为曲线.

1)求出曲线的普通方程;

2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设射线的极坐标方程为,点是射线与曲线的交点,求点的极径.

【答案】1.2

【解析】

1)先将直线的参数方程化为普通方程,再根据交轨法消去参数,即可得到曲线的普通方程;

2)设出点的直角坐标为,再根据点在射线上以及点在曲线上,即可解出.

1)直线的普通方程为,直线的普通方程为

联立直线方程消去参数,得曲线C的普通方程为

整理得

2)设Q点的直角坐标系坐标为

可得

代入曲线C的方程可得,解得(舍),所以点的极径为

练习册系列答案
相关题目

【题目】新型冠状病毒最近在全国蔓延,具有很强的人与人之间的传染性,该病毒在进入人体后一般有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间.假设每位病毒携带者在潜伏期内每天有位密切接触者,接触病毒携带者后被感染的概率为,每位密切接触者不用再接触其他病毒携带者.

1)求一位病毒携带者一天内感染的人数的均值;

2)若时,从被感染的第一天算起,试计算某一位病毒携带者在14天潜伏期内,被他平均累计感染的人数(用数字作答);

33162018分,由我国军事科学院军事科学研究院陈薇院士领衔的科学团队,研制重组新型冠状病毒疫苗获批进入临床状态,新疫苗的使用,可以极大减少感染新型冠状病毒的人数,为保证安全性和有效性,某科研团队抽取500支新冠疫苗,观测其中某项质量指标值,得到如下频率分布直方图:

①求这500支该项质量指标值的样本平均值(同一组的数据用该组区代表间的中点值)

②由直方图可以认为,新冠疫苗的该项质量指标值服从正态分布,其中近似为样本平均数近似为样本方差,经计算可得这500支新冠疫苗该项指标值的样本方差.现有5名志愿者参与临床试验,观测得出该项指标值分别为:206178195160229,试问新冠疫苗的该项指标值是否正常,为什么?

参考数据:,若,则

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网