题目内容
【题目】在极坐标系中,已知三点O(0,0),A(2, ),B(2 , ).
(1)求经过O,A,B的圆C1的极坐标方程;
(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为 (θ是参数),若圆C1与圆C2外切,求实数a的值.
【答案】
(1)解:将O,A,B三点化成普通坐标为O(0,0),A(0,2),B(2,2).
∴圆C1的圆心为(1,1),半径为 ,
∴圆C1的普通方程为(x﹣1)2+(y﹣1)2=2,
将 代入普通方程得ρ2﹣2ρcosθ﹣2ρsinθ=0,
∴ρ=2 sin( ).
(2)解:∵圆C2的参数方程为 (θ是参数),
∴圆C2的普通方程为(x+1)2+(y+1)2=a2.∴圆C2的圆心为(﹣1,﹣1),半径为|a|,
∵圆C1与圆C2外切,∴2 = +|a|,解得a=± .
【解析】(1)求出圆C1的普通方程,再将普通方程转化为极坐标方程;(2)将圆C2化成普通方程,根据两圆外切列出方程解出a.
【考点精析】认真审题,首先需要了解圆的参数方程(圆的参数方程可表示为).
【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
分 组 | 频 数 | 频 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 |
|
[80,90) |
|
|
[90,100] | 14 | 0.28 |
合 计 |
| 1.00 |
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.