题目内容
【题目】已知四棱柱ABCD﹣A1B1C1D1的侧棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E为A1C的中点
(1)求证:D1E∥平面BB1C1C;
(2)求证:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.
【答案】
(1)证明:取A1B1中点F,连结D1F,EF,B1C,
∵EF是△A1CB1的中位线,∴EF∥CB1,
∵AB∥DC,∴A1B1∥D1C1,
又∵AB=2,AD=1,∠ABC=60°,∴D1C1=1,
∴D1C1=FB1,∴四边形D1C1B1F为平行四边形,∴D1F∥C1B1,
又∵EF∩D1F=F,CB1∩C1B1=B1,
∴平面D1EF∥平面BB1C1C,
又∵D1E平面D1EF,∴D1E∥平面BB1C1C.
(2)证明:以A为坐标原点,直线AB、AA1分别为y轴、z轴,建立空间直角坐标系,
设AA1=a,则B(0,2,0),C( , ,0),A1(0,0,a),
=( ), =( ),
∵ = ,
∴BC⊥A1C.
(3)解:∵A1A=AB=2,
∴A(0,0,0),B1(0,2,2),C( ,0),A1(0,0,2),
∴ =( ,0), =(0,0,2), =(0,2,2),
设 =(x,y,z)是平面A1AC的法向量,
则 ,取y=1,得 =(﹣ ,1,0),
设 是平面AB1C的法向量,
则 ,取c=1,得 =( ),
设二面角A1﹣AC﹣B1的平面角为θ,
则cosθ=|cos< >|= = = ,
∴二面角A1﹣AC﹣B1的余弦值为 .
【解析】(1)取A1B1中点F,连结D1F,EF,B1C,由中位线定理,得EF∥CB1 , 从而得到四边形D1C1B1F为平行四边形,进而平面D1EF∥平面BB1C1C,由此能证明D1E∥平面BB1C1C.(2)以A为坐标原点,直线AB、AA1分别为y轴、z轴,建立空间直角坐标系,利用向量法能证明BC⊥A1C.(Ⅲ)求出平面A1AC的法向量和平面AB1C的法向量,利用向量法能求出二面角A1﹣AC﹣B1的余弦值.
【考点精析】掌握直线与平面平行的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
【题目】某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望;
(Ⅲ)若在这50名被调查者中随机发出20份的调查问卷,记为所发到的20人中赞成“车辆限行”的人数,求使概率取得最大值的整数.