题目内容
【题目】为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下实功,在在精准落实上见实效现从全县扶贫对象中随机抽取人对扶贫工作的满意度进行调查,以茎叶图中记录了他们对扶贫工作满意度的分数(满分分)如图所示,已知图中的平均数与中位数相同.现将满意度分为“基本满意”(分数低于平均分)、“满意”(分数不低于平均分且低于分)和“很满意”(分数不低于分)三个级别.
(1)求茎叶图中数据的平均数和的值;
(2)从“满意”和“很满意”的人中随机抽取人,求至少有人是“很满意”的概率.
【答案】(1)平均数为;(2)
【解析】
(1)由题意,根据图中个数据的中位数为,
由平均数与中位数相同,得平均数为,
所以,
解得;
(2)依题意,人中,“基本满意”有人,“满意”有人,“很满意”有人.“满意”和“很满意”的人共有人.分别记“满意”的人为,,,,“很满意”的人为,,,.从中随机抽取人的一切可能结果所组成的基本事件共个:,,,,,,,,,,,,,,,,,,,,,,,,,,,.
用事件表示“人中至少有人是很满意”这一件事,则事件由个基本事件组成:,,,,,,,,,,,,,,,,,,,,,,共有22个.
故事件的概率为
【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:
单价(千元) | ||||||
销量(百件) |
已知.
(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.
(参考公式:线性回归方程中的估计值分别为)