题目内容
【题目】已知平面直角坐标系xOy中,过点P(﹣1,﹣2)的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsinθtanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|=|MN|,求实数a的值.
【答案】
(1)解:∵直线l的参数方程为 (t为参数),
∴直线l的普通方程:x﹣y﹣1=0,
∵曲线C的极坐标方程为 ρsinθtanθ=2a(a>0),
∴ρ2sin2θ=2aρcosθ(a>0),
∴曲线C的普通方程:y2=2ax
(2)解:∵y2=2ax;
∴x≥0,
设直线l上点M、N对应的参数分别为t1,t2,(t1>0,t2>0),
则|PM|=t1,|PN|=t2,
∵|PM|=|MN|,
∴|PM|= |PN|,
∴t2=2t1,
将 (t为参数),代入y2=2ax得
t2﹣2 (a+2)t+4(a+2)=0,
∴t1+t2=2 (a+2),
t1t2=4(a+2),
∵t2=2t1,
∴a=
【解析】(1)利用同角的平方关系以及极坐标方程和直角坐标的互化公式求解;(2)结合直线的参数方程中参数的几何意义和二次方程的韦达定理,求解即可.
【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测.
地区 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.
【题目】“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀请的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
接受挑战 | 不接受挑战 | 合计 | |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
合计 | 70 | 30 | 100 |
根据表中数据,能否在犯错误的概率不超过0.1的前提下认为“冰桶挑战赛与受邀请者的性别有关”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程R(公里) | ||
100≤R<180 | 180≤R<280 | <280 | |
纯电动乘用车 | 2.5万元/辆 | 4万元/辆 | 6万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 | 频数 | 频率 |
100≤R<180 | 3 | 0.3 |
180≤R<280 | 6 | x |
R≥280 | y | z |
合计 | M | 1 |
(1)求x、y、z、M的值;
(2)若从这M辆纯电动乘用车任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为X(单位:万元),求X的分布列和数学期望值E(X).
【题目】2018年2月25日第23届冬季奥动会在韩国平昌闭幕,中国以金银铜的成绩结束本次冬奥会的征程,某校体育爱好者协会对某班进行了“本届冬奥会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),按分层抽样从该班学生中随机抽取了人,具体的调查结果如下表:
某班 | 满意 | 不满意 |
男生 | ||
女生 |
(1)若该班女生人数比男生人数多人,求该班男生人数和女生人数;
(2)若从该班调查对象的女生中随机选取人进行追踪调查,记选中的人中“满意”的人数为,求时对应事件的概率.