题目内容

【题目】已知函数f(x)=a|log2x|+1(a≠0),定义函数F(x)= ,给出下列命题:
①F(x)=|f(x)|;
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)﹣F(n)<0成立;
④当a>0时,函数y=F(x)﹣2有4个零点.
其中正确命题的个数为( )
A.0
B.1
C.2
D.3

【答案】D
【解析】解:(1)∵函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=
∴|f(x)|=|a|log2x|+1|,∴F(x)≠|f(x)|;
①不对
2)∵F(﹣x)= =F(x)
∴函数F(x)是偶函数;
故②正确
3)∵当a<0时,若0<m<n<1,
∴|log2m|>|log2n|
∴a|log2m|+1>a|log2n|+1,
即F(m)<F(n)成立;
故F(m)﹣F(n)<0成立;
所以③正确
4)

∵f(x)=a|log2x|+1(a≠0),定义函数F(x)=
∴x>0时,(0,1)单调递减,(1,+∞)单调递增
∴x>0时,F(x)的最小值为F(1)=1,
故x>0时,F(x)与y=﹣2有2个交点,
∵函数F(x)是偶函数
∴x<0时,F(x)与y=﹣2有2个交点
故当a>0时,函数y=F(x)﹣2有4个零点.
所以④正确,
【考点精析】利用函数的偶函数和函数奇偶性的性质对题目进行判断即可得到答案,需要熟知一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网