题目内容
【题目】在中, , , , 是中点(如图1).将沿折起到图2中的位置,得到四棱锥.
(1)将沿折起的过程中, 平面是否成立?并证明你的结论;
(2)若与平面所成的角为60°,且为锐角三角形,求平面和平面所成角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)当DP1⊥DA时,CD⊥平面P1DA.由余弦定理得DC2=4,由勾股定理得DC⊥AD.即得到将△PCD沿CD折起的过程中,当DP1⊥DA时,CD⊥平面P1DA.(2)先证明在平面内的射影必在棱上,再建系,得到两个平面的法向量,得到两个法向量的夹角进而得到两个面的夹角。
解析:
(1)将沿折起过程中, 平面成立,
证明:∵是中点,∴,
在中,由余弦定理得,
.
∴,
∵,
∴为等腰直角三角形且,
∴, ,
∴平面.
(2)由(1)知平面, 平面,
∴平面平面,
∵为锐角三角形,∴在平面内的射影必在棱上(如图),
∴平面,
则是和平面所成的角,
故,
∵,
∴为等边三角形, 为中点,
故以为坐标原点,过点与平行的直线为轴, 所在直线为轴, 所在直线为轴建立如图所示坐标系.
设轴于交于点,
∵,∴ ,
易知,
∴,
则, , , ,
, , , ,
∵平面,
∴可取平面的法向量,
设平面的法向量,平面和平面所成的角为,
则,∴得
令,则,
从而.
【题目】某网站调查2016年大学毕业生就业状况,其中一项数据显示“2016年就业率最高学科”为管理学,高达(数据来源于网络,仅供参考).为了解高三学生对“管理学”的兴趣程度,某校学生社团在高校高三文科班进行了问卷调查,问卷共100道选择题,每题1分,总分100分,社团随机抽取了100名学生的问卷成绩(单位:分)进行统计,得到频率分布表如下:
组号 | 分组 | 男生 | 女生 | 频数 | 频率 |
第一组 | 3 | 2 | 5 | 0.05 | |
第二组 | 17 | ||||
第三组 | 20 | 10 | 30 | 0.3 | |
第四组 | 6 | 18 | 24 | 0.24 | |
第五组 | 4 | 12 | 16 | 0.16 | |
合计 | 50 | 50 | 100 | 1 |
(1)求频率分布表中, , 的值;
(2)若将得分不低于60分的称为“管理学意向”学生,将低于60分的称为“非管理学意向”学生,根据条件完成下面列联表,并据此判断是否有的把握认为是否为“管理学意向”与性别有关?
非管理学意向 | 管理学意向 | 合计 | |
男生 | |||
女生 | |||
合计 |
(3)心理咨询师认为得分低于20分的学生可能“选择困难”,要从“选择困难”的5名学生中随机抽取2名学生进行心理辅导,求恰好有1名男生,1名女生被选中的概率.
参考公式: ,其中.
参考临界值:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |