题目内容
如图,已知在⊙O中,P是弦AB的中点,过点P作半径OA的垂线,垂足是点E.分别交⊙O于C、D两点.
求证:PC·PD=AE·AO.
见解析
【解析】
证明 连接OP,∵P为AB的中点,
∴OP⊥AB,AP=PB.
∵PE⊥OA,
∴AP2=AE·AO.
∵PD·PC=PA·PB=AP2,
∴PD·PC=AE·AO.
练习册系列答案
相关题目
题目内容
如图,已知在⊙O中,P是弦AB的中点,过点P作半径OA的垂线,垂足是点E.分别交⊙O于C、D两点.
求证:PC·PD=AE·AO.
见解析
【解析】
证明 连接OP,∵P为AB的中点,
∴OP⊥AB,AP=PB.
∵PE⊥OA,
∴AP2=AE·AO.
∵PD·PC=PA·PB=AP2,
∴PD·PC=AE·AO.