题目内容
【题目】已知函数,有下列说法:
①函数对任意,都有成立;
②函数在上单调递减;
③函数在上有3个零点;
④若函数的值域为,设是中所有有理数的集合,若简分数(其中,为互质的整数),定义函数,则在中根的个数为5;
其中正确的序号是______(填写所有正确结论的番号).
【答案】②③④
【解析】
画出函数图像,结合图像,以及函数性质,对选项进行逐一分析.
根据函数解析式,画出函数的图像如下图所示:
对①,因为,故成立,
则不成立,故①不正确;
对②,在内,函数在单调递减,根据图像可知,
函数的单调区间为,故②正确;
对③,在同一直角坐标系中画出与的图像:
由图可知,两函数有3个交点,故有三个零点,
故③正确;
对④,由图可知,,故,
根据题意可得,解得,
又因为,且均为整数,
故是小于24,且是3的倍数,同时还满足的自然数,
故由此得的取值如下:
,,;,,
合计5种可能.故在中根的个数为5.故④正确.
故答案为:②③④.
练习册系列答案
相关题目