题目内容
【题目】某市为了改善居民的休闲娱乐活动场所,现有一块矩形草坪如下图所示,已知:米,米,拟在这块草坪内铺设三条小路、和,要求点是的中点,点在边上,点在边时上,且.
(1)设,试求的周长关于的函数解析式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.
【答案】(1),定义域为;
(2)当米时,铺路总费用最低,最低总费用为元.
【解析】
(1)利用勾股定理通过,得出,结合实际情况得出该函数的定义域;
(2)设,由题意知,要使得铺路总费用最低,即为求的周长最小,求出的取值范围,根据该函数的单调性可得出的最小值.
(1)由题意,在中,,,,,
中,,,,又,
,
所以,即.
当点在点时,这时角最小,求得此时;
当点在点时,这时角最大,求得此时.
故此函数的定义域为;
(2)由题意知,要求铺路总费用最低,只需要求的周长的最小值即可.
由(1)得,,
设,,
则,
由,得,,则,
从而,当,即当时,,
答:当米时,铺路总费用最低,最低总费用为元.
【题目】某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.
(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;(精确到0.01)
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:
参考公式与临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】为了解男性家长和女性家长对高中学生成人礼仪式的接受程度,某中学团委以问卷形式调查了位家长,得到如下统计表:
男性家长 | 女性家长 | 合计 | |
赞成 | |||
无所谓 | |||
合计 |
(1)据此样本,能否有的把握认为“接受程度”与家长性别有关?说明理由;
(2)学校决定从男性家长中按分层抽样方法选出人参加今年的高中学生成人礼仪式,并从中选人交流发言,求发言人中至多一人持“赞成”态度的概率..
参考数据
参考公式