题目内容

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的条件下,若△ABC的面积为 ,求a的值.

【答案】
(1)解:在△ABC中,过B作BD⊥AC,则b=AD+CD=acosC+ccosA.

∵b=acosC+3bsin(B+C)=acosC+3bsinA,

∴3bsinA=ccosA,∴ =3tanA=

∴tanA= ,A=


(2)解:∵SABC= sinA= =

∴bc=4

∵c= b,∴b=2,c=2

由余弦定理得a2=b2+c2﹣2bccosA=4+12﹣12=4.

∴a=2.


【解析】(1)过B作BD⊥AC,则b=acosC+ccosA,结合条件可得3bsinA=ccosA,得出tanA;(2)根据面积公式和 计算b,c,再利用余弦定理得出a.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网