题目内容

【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:

i

1

2

3

4

5

合计

xi(百万元)

1.26

1.44

1.59

1.71

1.82

7.82

wi(百万元)

2.00

2.99

4.02

5.00

6.03

20.04

yi(百万元)

3.20

4.80

6.50

7.50

8.00

30.00

=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi2=0.20, (wi2=10.14

其中
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);

(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)

【答案】
(1)解:散点图如右图:

根据散点图可知,y=c+dx3适合作销售额y关于明星代言费x的回归方程


(2)解:令ω=x3,则y=c+dω是y关于ω的线性回归方程,

所以 = =1.21, = ﹣1.21ω=1.15+1.21x3

所以y=1.15+1.21ω=1.15+1.21x3

z=f(x)=0.2y﹣0.726x=0.2(1.15+1.21x3)﹣0.726x

=0.242x3﹣0.726x+0.23,其中x∈[1.00,2.00]

令z'=0.726x2﹣0.726≥0,得x≥1.00,

因为x∈[1.00,2.00],

所以估计当明星代言费x=2.00百万元时,纯收益z取最大值.

估计:当明星代言费x=2.00百万元时,纯收益z取最大值


【解析】(1)散点图,根据散点图可知,y=c+dx3适合作销售额y关于明星代言费x的回归方程.(2)令ω=x3 , 则y=c+dω是y关于ω的线性回归方程,求出y=1.15+1.21ω=1.15+1.21x3 . z=f(x)=0.242x3﹣0.726x+0.23,其中x∈[1.00,2.00],利用导数性质求出当明星代言费x=2.00百万元时,纯收益z取最大值.
【考点精析】关于本题考查的频率分布直方图,需要了解频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网