题目内容
【题目】设f(x)=x3+mlog2(x+ )(m∈R,m>0),则不等式f(m)+f(m2﹣2)≥0的解是 . (注:填写m的取值范围)
【答案】m≥1
【解析】解:因为f(﹣x)=﹣x3+log2(﹣x+ )=﹣x3﹣log2(x+ ),
所以函数f(x)=x3+mlog2(x+ )(m∈R,m>0)是定义域为R的奇函数,且在R上单调递增,
所以f(m)+f(m2﹣2)≥0f(m2﹣2)≥﹣f(m)f(m2﹣2)≥f(﹣m)m2﹣2≥﹣mm≥1或m≤﹣2
因为m∈R,m>0,所以m≥1.
所以答案是:m≥1.
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
【题目】某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )
使用智能手机 | 不使用智能手机 | 总计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
总计 | 20 | 10 | 30 |
参考公式: ,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有99.9%的把握认为使用智能手机对学习有影响.
B. 有99.9%的把握认为使用智能手机对学习无影响.
C. 在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.
D. 在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响.
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由 算得, .
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i | 1 | 2 | 3 | 4 | 5 | 合计 |
xi(百万元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百万元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百万元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi﹣ )2=0.20, (wi﹣ )2=10.14 |
其中 .
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)