题目内容
【题目】已知函数,.
(1)求函数的极值;
(2)设函数,若函数恰有一个零点,求函数的解析式.
【答案】(1)极小值1,函数没有极大值.(2)
【解析】
(1)先求出函数的导数,再利用导数求函数的极值.
(2)先求出的导数,再利用导数求函数的极值,根据函数恰有一个零点,可得极值等于零,从而求得的值,可得函数的解析式.
解:(1)因为,
令,解得.
因为,当时,,函数在上是减函数;
当,,函数在上是增函数.
所以,当时,函数有极小值,函数没有极大值.
(2),函数的定义域为,
所以,
令得,当时,,函数在上是减函数;
当,,函数在上是增函数.
当时,,,
当时,,但是比的增长速度要快, ,
故函数的极小值为,
因为函数恰有一个零点,故,所以,
所以.
所以函数.
【题目】某工厂加工产品的工人的年龄构成和相应的平均正品率如下表:
年龄(单位:岁) | ||||
人数比例 | 0.3 | 0.4 | 0.2 | 0.1 |
平均正品率 | 85% | 95% | 80% | 70% |
(1)画出该工厂加工产品的工人的年龄频率分布直方图;
(2)估计该工厂工人加工产品的平均正品率;
(3)该工厂想确定一个转岗年龄岁,到达这个年龄的工人不再加工产品,转到其他岗位,为了使剩余工人加工产品的平均正品率不低于90%,若年龄在同一区间内的工人加工产品的正品率都取相应区间的平均正品率,则估计最高可定为多少岁?
【题目】出版商为了解某科普书一个季度的销售量(单位:千本)和利润(单位:元/本)之间的关系,对近年来几次调价之后的季销售量进行统计分析,得到如下的10组数据.
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2.4 | 3.1 | 4.6 | 5.3 | 6.4 | 7.1 | 7.8 | 8.8 | 9.5 | 10 | |
18.1 | 14.1 | 9.1 | 7.1 | 4.8 | 3.8 | 3.2 | 2.3 | 2.1 | 1.4 |
根据上述数据画出如图所示的散点图:
(1)根据图中所示的散点图判断和哪个更适宜作为销售量关于利润的回归方程类型?(给出判断即可,不需要说明理由)
(2)根据(1)中的判断结果及参考数据,求出关于的回归方程;
(3)根据回归方程预测当每本书的利润为10.5元时的季销售量.
参考公式及参考数据:
①对于一组数据,其回归直线的斜率和截距的公式分别为.
②参考数据:
6.50 | 6.60 | 1.75 | 82.50 | 2.70 |
表中.另:.计算时,所有的小数都精确到0.01.
【题目】月份的二中迎来了国内外的众多宾客,其中很多人喜欢询问团队模式,为了了解“询问团队模式”是否与性别有关,在月期间,随机抽取了人,得到如下所示的列联表:
关心“团队” | 不关心“团队” | 合计 | |
男性 | 12 | ||
女性 | 36 | ||
合计 | 80 |
(1)若在这人中,按性别分层抽取一个容量为的样本,男性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为关心“团队”与性别有关系?
(2)若以抽取样本的频率为概率,从月来宾中随机抽取人赠送精美纪念品,记这人中关心“团队”人数为,求的分布列和数学期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |