题目内容
【题目】已知在平面直角坐标系中,动点与两定点,连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,过原点且斜率为的直线与曲线交于两点(点在第一象限),求四边形面积的最大值.
【答案】(1);(2)
【解析】
(1)设,写出动点与两定点,连线的斜率,由已知,可求出 的方程,即可求出曲线的方程.
(2)写出直线的方程,与曲线的方程联立,可求出交点的坐标;求出直线的方程,即可求出到的距离,从而可求出,结合基本不等式可求出面积的最大值.
解:(1)设,,,化简得:
又,
动点的轨迹方程为
(2)设直线的方程为,由得,
,,
,
,,
直线的方程为.
点到直线的距离
同理:点到直线的距离,因为,且
所以
,
当且仅当,即时等号成立.四边形面积的最大值为
【题目】每个国家对退休年龄都有不一样的规定,从2018年开始,我国关于延迟退休的话题一直在网上热议,为了了解市民对“延迟退休”的态度,现从某地市民中随机选取100人进行调查,调查情况如下表:
年龄段(单位:岁) | ||||||
被调查的人数 | ||||||
赞成的人数 |
(1)从赞成“延迟退休”的人中任选1人,此人年龄在的概率为,求出表格中的值;
(2)若从年龄在的参与调查的市民中按照是否赞成“延迟退休”进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取4人参加座谈会,记这4人中赞成“延迟退休”的人数为,求的分布列及数学期望.
【题目】某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了次试验,得到数据如下:
零件数/个 | 10 | 20 | 30 | 40 | 50 | 60 |
加工时间/min | 64 | 70 | 77 | 82 | 90 | 97 |
(1)试对上述变量与的关系进行相关性检验,如果与具有线性相关关系,求出对的回归直线方程;
(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?
附:相关性检验的临界值表
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
4 | 0.811 | 0.917 |
5 | 0.754 | 0.874 |
6 | 0.707 | 0.834 |
,
参考数据:;
17950 | 9100 | 39158 | 1750 | 758 |
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |