题目内容
【题目】已知函数,为的导数,函数在处取得最小值.
(1)求证:;
(2)若时,恒成立,求的取值范围.
【答案】(1)见解析; (2).
【解析】
(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;
(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,,分析可得的最小值为,分,讨论即得解.
(1)由题意,
令,则,知为的增函数,
因为,,
所以,存在使得,即.
所以,当时,为减函数,
当时,为增函数,
故当时,取得最小值,也就是取得最小值.
故,于是有,即,
所以有,证毕.
(2)由(1)知,的最小值为,
①当,即时,为的增函数,
所以,
,
由(1)中,得,即.
故满足题意.
②当,即时,有两个不同的零点,,
且,即,
若时,为减函数,(*)
若时,为增函数,
所以的最小值为.
注意到时,,且此时,
(ⅰ)当时,,
所以,即,
又
,
而,所以,即.
由于在下,恒有,所以.
(ⅱ)当时,,
所以,
所以由(*)知时,为减函数,
所以,不满足时,恒成立,故舍去.
故满足条件.
综上所述:的取值范围是.
【题目】某工厂有两台不同机器和生产同一种产品各万件,现从各自生产的产品中分别随机抽取件,进行品质鉴定,鉴定成绩的茎叶图如图所示:
该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.
(1)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过的情况下,认为机器生产的产品比机器生产的产品好;
生产的产品 | 生产的产品 | 合计 | |
良好以上(含良好) | |||
合格 | |||
合计 |
(
(3)已知优秀等级产品的利润为元/件,良好等级产品的利润为元/件,合格等级产品的利润为元/件,机器每生产万件的成本为万元,机器每生产万件的成本为万元;该工厂决定:按样本数据测算,若收益之差不超过万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?
附:1.独立性检验计算公式:.
2.临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |