题目内容
4.如图,已知四棱锥P-ABCD,底面ABCD是菱形,PA⊥底面ABCD,∠ABC=60°,PA=AB,E,F分别为BC,PC的中点.(Ⅰ)求证:AE⊥PD;
(Ⅱ)求二面角E-AF-C的余弦值.
分析 (Ⅰ)通过PA⊥平面ABCD得AE⊥PA,根据题意易得△ABC为等边三角形,利用线面垂直的判定定理可得AE⊥平面PAD,进而有AE⊥PD;
(Ⅱ)以A为坐标原点,以AE、AD、AP所在直线为x、y、z轴建立坐标系,则所求值转化为平面EAF的法向量与平面ACF的法向量的夹角的余弦值的绝对值.
解答 (Ⅰ)证明:∵PA⊥平面ABCD,AE?平面ABCD,∴AE⊥PA,
∵四边形ABCD是菱形,且∠ABC=60°,∴△ABC为等边三角形,
又∵E是BD中点,∴AE⊥BC,
由BC∥AD可知AE⊥AD,
又∵PA∩AE=A,∴AE⊥平面PAD,
又∵PD?平面PAD,∴AE⊥PD;
(Ⅱ)解:由(I)知AE、AD、AP两两垂直,
以A为坐标原点,以AE、AD、AP所在直线为x、y、z轴建立坐标系如图,
设PA=AB=2,则A(0,0,0),E($\sqrt{3}$,0,0),C($\sqrt{3}$,1,0),F($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,1),
∴$\overrightarrow{AE}$=($\sqrt{3}$,0,0),$\overrightarrow{AC}$=($\sqrt{3}$,1,0),$\overrightarrow{AF}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,1),
设平面EAF的法向量为$\overrightarrow{m}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AE}=0}\\{\overrightarrow{m}•\overrightarrow{AF}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{\sqrt{3}{x}_{1}=0}\\{\frac{\sqrt{3}}{2}{x}_{1}+\frac{1}{2}{y}_{1}+{z}_{1}=0}\end{array}\right.$,
令z1=1,可得$\overrightarrow{m}$=(0,-2,1),
设平面ACF的法向量为$\overrightarrow{n}$=(x2,y2,z2),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=0}\\{\overrightarrow{n}•\overrightarrow{AF}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{\sqrt{3}{x}_{2}+{y}_{2}=0}\\{\frac{\sqrt{3}}{2}{x}_{2}+\frac{1}{2}{y}_{2}+{z}_{2}=0}\end{array}\right.$,
令y2=$\sqrt{3}$,可得$\overrightarrow{n}$=(-1,$\sqrt{3}$,0),
cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-2\sqrt{3}}{\sqrt{5}×2}$=-$\frac{\sqrt{15}}{5}$,
∴二面角E-AF-C的余弦值为$\frac{\sqrt{15}}{5}$.
点评 本题考查二面角,空间中线面的位置关系,向量数量积运算,注意解题方法的积累,建立坐标系是解决本题的关键,属于中档题.
A. | {x|2<x<4} | B. | {x|1<x<4} | C. | {x|1<x<2} | D. | {x|x>1} |
A. | -1 | B. | 2 | C. | 4 | D. | 8 |
A. | (-3,-1) | B. | (-3,5] | C. | (3,5] | D. | (-1,3) |