题目内容
【题目】如图,直三棱柱中,点是棱的中点.
(Ⅰ)求证:平面;
(Ⅱ)若,,在棱上是否存在点,使二面角的大小为,若存在,求出的值;若不存在,说明理由.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)先连接,交于点,再由线面平行的判定定理,即可证明平面;
(Ⅱ)先由题意得,,两两垂直,以为原点,如图建立空间直角坐标系
设 ,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出,进而可得出结果.
解:(Ⅰ)证明:连接,交于点,则为中点,
连接,又是棱的中点,
平面,平面,
平面.
(Ⅱ)解:由已知,,则,,两两垂直
以为原点,如图建立空间直角坐标系
则,
设
则,,
设平面的法向量为 ,
则
∴取平面的一个法向量.
设平面的法向量为 ,
则
∴取平面的一个法向量 .
∴,得或
∵,∴
∴存在点,此时,使二面角的大小为45°.
【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
职位 | A | B | C | D | 职位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;
(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:
选择意愿 人员结构 | 40岁以上(含40岁)男性 | 40岁以上(含40岁)女性 | 40岁以下男性 | 40岁以下女性 |
选择甲公司 | 110 | 120 | 140 | 80 |
选择乙公司 | 150 | 90 | 200 | 110 |
若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【题目】为了检验设备M与设备N的生产效率,研究人员作出统计,得到如下表所示的结果,则
设备M | 设备N | |
生产出的合格产品 | 48 | 43 |
生产出的不合格产品 | 2 | 7 |
附:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,其中.
A. 有90%的把握认为生产的产品质量与设备的选择有关
B. 没有90%的把握认为生产的产品质量与设备的选择有关
C. 可以在犯错误的概率不超过0.01的前提下认为生产的产品质量与设备的选择有关
D. 不能在犯错误的概率不超过0.1的前提下认为生产的产品质量与设备的选择有关
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 100 | 102 | 108 | 114 | 116 |
PM2.5的浓度y(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根据上表数据,用最小二乘法,求出y关于x的线性回归方程x;
(2)若周六同一时间段车流量200万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少?
(参考公式:,;参考数据:xi=540,yi=420)