题目内容
设f(x)是定义在R上的一个增函数,F(x)=f(x)-f(-x),那么F(x)为
- A.增函数且是奇函数
- B.增函数且是偶函数
- C.减函数且是奇函数
- D.减函数且是偶函数
A
分析:用定义验证奇偶性,再根据单调性的判断规则确定函数的单调性即可
解答:∵F(x)=f(x)-f(-x),∴F(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-F(x),∴F(x)必定是奇函数.
又f(x)是定义在R上的任意一个增函数,由复合函数的单调性知f(-x)是定义在R上的任意一个减函数,
故f(x)-f(-x)是一个增函数
故F(x)为增函数且为奇函数
故选A
点评:题考查函数奇偶性的判断以及函数单调性的判断,属于函数性质中的基本题型.题目难度较小,其中判断函数的单调性用上了判断规律,要注意总结规律.
分析:用定义验证奇偶性,再根据单调性的判断规则确定函数的单调性即可
解答:∵F(x)=f(x)-f(-x),∴F(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-F(x),∴F(x)必定是奇函数.
又f(x)是定义在R上的任意一个增函数,由复合函数的单调性知f(-x)是定义在R上的任意一个减函数,
故f(x)-f(-x)是一个增函数
故F(x)为增函数且为奇函数
故选A
点评:题考查函数奇偶性的判断以及函数单调性的判断,属于函数性质中的基本题型.题目难度较小,其中判断函数的单调性用上了判断规律,要注意总结规律.
练习册系列答案
相关题目
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为( )
A、f(x)=-x2+6x-8 | B、f(x)=x2-10x+24 | C、f(x)=x2-6x+8 | D、f(x)=x2-6x+8+a |