题目内容
【题目】设函数,曲线在点处的切线方程为.
(1)求的解析式;
(2)求过曲线上任意一点的切线与直线和直线所围成的三角形面积.
【答案】(1);(2)6
【解析】
(1)直接根据切线方程公式得到,解得答案.
(2)设为曲线上任一点,切线方程为,计算切线与直线的交点坐标为,与直线y=x的交点坐标为(2x0,2x0),计算面积得到答案.
(1)方程可化为,当时,,又,
于是解得,故.
(2)设为曲线上任一点,由知:
处的切线方程为,
即.令,得,
从而得切线与直线的交点坐标为.
令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0);
点P(x0,y0)处的切线与直线x=0,y=x,所围成的三角形面积为|﹣||2x0|=6.
练习册系列答案
相关题目
【题目】现从某医院中随机抽取了位医护人员的关爱患者考核分数(患者考核:分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:分制),用相关的特征量表示,数据如下表:
(1)求关于的线性回归方程(计算结果精确到);
(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为分时,他的关爱患者考核分数(精确到).
参考公式及数据:回归直线方程中斜率和截距的最小二乘法估计公式分别为
,其中.