题目内容
空间直角坐标系中,O为坐标原点,已知两点坐标为A(3,1,0),B(-1,3,0),若点C满足=+,其中,∈R,+=1,则点C的轨迹为
A.平面 | B.直线 | C.圆 | D.线段 |
B
试题分析:设点C的坐标为(x,y,z ),由题意可得 (x,y,z )=(3-β,+3β,0 ),再由+=1可得,x+2y-5=0,故点C的轨迹方程为 x+2y-5=0.解:设点C的坐标为(x,y,z ),由题意可得 (x,y,z )=(3-,+3,0 )再由+=1可得 x=3-=3-4,y=+3=1+2β,故有 x+2y-5=0,故点C的轨迹方程为 x+2y-5=0,则点C的轨迹为直线,故选 B.
点评:本题考查点轨迹方程的求法,两个向量坐标形式的运算,求出x+2y-5=0,是解题的关键.
练习册系列答案
相关题目