题目内容

【题目】已知a>0,b>0,c>0,函数f(x)=|x﹣a|+|x+b|+c的最小值为1.
(1)求a+b+c的值;
(2)求证:a2+b2+c2

【答案】
(1)解:∵a>0,b>0,c>0,

∴f(x)=|x﹣a|+|x+b|+c≥|x﹣a﹣x﹣b|+c=a+b+c,

当且仅当(x﹣a)(x﹣b)≤0时:“=”成立,

故a+b+c=1


(2)证明:3(a2+b2+c2)﹣12

=3(a2+b2+c2)﹣(a+b+c)2

=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac

=(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,

∴a2+b2+c2


【解析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)通过作差法证明即可.
【考点精析】通过灵活运用基本不等式,掌握基本不等式:,(当且仅当时取到等号);变形公式:即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网