题目内容

17.如图,已知直线a∥平面α,在平面α内有一动点P,点A是直线a上一定点,且AP与直线a所成角θ=$\frac{π}{4}$,点A到平面α的距离为2,若过点A作AO⊥α于点O,在平面α内,以过点O作直线a的平行线为x轴,以过点O作x轴的垂线为y轴建立直角坐标系,则动点P的轨迹方程为x2-y2=4..

分析 建立坐标系,作PB⊥y轴,连接AB,设P点坐标为:(x,y),由题意可得:∠APB=θ,AB=xtanθ,OB=y,AO=d,利用勾股定理可得动点P的轨迹方程.

解答 解:过点A作AO⊥α于点O,在平面α内,以过点O作直线a的平行线为x轴,
以过点O作x轴的垂线为y轴建立直角坐标系,作PB⊥y轴,连接AB,
设P点坐标为:(x,y),
由题意可得:∠APB=θ=$\frac{π}{4}$,AB=xtanθ=x,OB=y,AO=d=2.
所以,由勾股定理可得:(xtanθ)2=d2+y2,即:x2=22+y2
整理可得动点P的轨迹方程为:x2-y2=4.
故答案为:x2-y2=4.

点评 本题主要考查了勾股定理,求动点的轨迹方程,考查了空间想象能力和转化思想,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网