题目内容
.(本题满分14分)已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<.
(1)若coscosφ-sinsinφ=0,求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.
(1)若coscosφ-sinsinφ=0,求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.
解: (1)由coscosφ-sinsinφ=0得coscosφ-sinsinφ=0,
即cos=0. ……….(3分)
又|φ|<,∴φ=;……….(6分)
(2)由(1)得,f(x)=sin.依题意,=.
又T=,故ω=3,∴f(x)=sin………..(9分)
函数f(x)的图象向左平移m个单位后,所得图象对应的函数为g(x)=sin,
g(x)是偶函数当且仅当3m+=kπ+(k∈Z),
即m=+(k∈Z).
从而,最小正实数m=.……….(12分)
即cos=0. ……….(3分)
又|φ|<,∴φ=;……….(6分)
(2)由(1)得,f(x)=sin.依题意,=.
又T=,故ω=3,∴f(x)=sin………..(9分)
函数f(x)的图象向左平移m个单位后,所得图象对应的函数为g(x)=sin,
g(x)是偶函数当且仅当3m+=kπ+(k∈Z),
即m=+(k∈Z).
从而,最小正实数m=.……….(12分)
略
练习册系列答案
相关题目