题目内容
已知三棱锥A-BCD及其三视图如图所示.
(1)求三棱锥A-BCD的体积;
(2)点D到平面ABC的距离;
(3)求二面角B-AC-D的正弦值.
(1)求三棱锥A-BCD的体积;
(2)点D到平面ABC的距离;
(3)求二面角B-AC-D的正弦值.
(1)由三视图可知:AD⊥底面CBD,AD=2,底面△BCD为等腰直角三角形,∠CBD=90°,BC=BD=1.
∴V三棱锥A-BCD=
S△BCD×AD=
×
×12×2=
;
(2)过D点D作DE⊥AB交AB于E,
由(1)可知:AD⊥平面BCD,∴AD⊥BC,
又BC⊥BD,AD∩BD=D,
∴BC⊥平面ABD,∴BC⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.
∴DE即为点D到平面ABC的距离.
在Rt△ABD中,DE=
=
=
.
(3)过点D作DF⊥AC交AC于点F,连接EF.
由(1)可知:DE⊥平面ABC.
∴DF⊥AC.
则∠DFE即为二面角的平面角.
在Rt△ADC中,由勾股定理可得AC=
=
.
∴DF=
=
=
.
在Rt△DEF中,sin∠DFE=
=
=
.
∴V三棱锥A-BCD=
1 |
3 |
1 |
3 |
1 |
2 |
1 |
3 |
(2)过D点D作DE⊥AB交AB于E,
由(1)可知:AD⊥平面BCD,∴AD⊥BC,
又BC⊥BD,AD∩BD=D,
∴BC⊥平面ABD,∴BC⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.
∴DE即为点D到平面ABC的距离.
在Rt△ABD中,DE=
AD•DB |
AB |
2×1 | ||
|
2
| ||
5 |
(3)过点D作DF⊥AC交AC于点F,连接EF.
由(1)可知:DE⊥平面ABC.
∴DF⊥AC.
则∠DFE即为二面角的平面角.
在Rt△ADC中,由勾股定理可得AC=
22+(
|
6 |
∴DF=
AD•DC |
AC |
2×
| ||
|
2
| ||
3 |
在Rt△DEF中,sin∠DFE=
DE |
DF |
| ||||
|
| ||
5 |
练习册系列答案
相关题目