题目内容
【题目】春节期间某商店出售某种海鲜礼盒,假设每天该礼盒的需求量在范围内等可能取值,该礼盒的进货量也在范围内取值(每天进1次货).商店每销售1盒礼盒可获利50元;若供大于求,剩余的削价处理,每处理1盒礼盒亏损10元;若供不应求,可从其它商店调拨,销售1盒礼盒可获利30元.设该礼盒每天的需求量为盒,进货量为盒,商店的日利润为元.
(1)求商店的日利润关于需求量的函数表达式;
(2)试计算进货量为多少时,商店日利润的期望值最大?并求出日利润期望值的最大值.
【答案】(1)
(2)时,日利润的数学期望最大,最大值为958.5元
【解析】
(1)根据题意即可写出日利润关于需求量的分段函数的表达式;
(2)首先可以写出日利润的分布列,然后根据日利润的分布列即可写出日利润的数学期望,最后通过二次函数的相关性质,即可得出结果。
(1)由于礼盒的需求量为,进货量为,商店的日利润关于需求量的函数表达式为:
,即;
(2)日利润的分布列为:
日利润的数学期望为:
,
,
,
结合二次函数的知识,当时,日利润的数学期望最大,最大值为958.5元。
【题目】2019年初,某高级中学教务处为了解该高级中学学生的作文水平,从该高级中学学生某次考试成绩中按文科、理科用分层抽样方法抽取人的成绩作为样本,得到成绩频率分布直方图如图所示,,参考的文科生与理科生人数之比为,成绩(单位:分)分布在的范围内且将成绩(单位:分)分为,,,,,六个部分,规定成绩分数在分以及分以上的作文被评为“优秀作文”,成绩分数在50分以下的作文被评为“非优秀作文”.
(1)求实数的值;
(2)(i)完成下面列联表;
文科生/人 | 理科生/人 | 合计 | |
优秀作文 | 6 | ______ | ______ |
非优秀作文 | ______ | ______ | ______ |
合计 | ______ | ______ | 400 |
(ii)以样本数据研究学生的作文水平,能否在犯错误的概率不超过的情况下认为获得“优秀作文”与学生的“文理科“有关?
注:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |