题目内容

在等差数列中,若,则有等式 成立,类比上述性质,在等比数列中,若,则有等式                             .

解析考点:类比推理.
分析:根据等差数列与等比数列通项的性质,结合类比的规则,和类比积,加类比乘,由类比规律得出结论即可.
解:在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n成立(n<19,n∈N*).,
故相应的在等比数列{bn}中,若b9=1,则有等式b1b2…bn=b1b2…b17-n(n<17,n∈N*
故答案为:b1b2…bn=b1b2…b17-n(n<17,n∈N*).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网