题目内容
【题目】2020年1月10日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗体与上次接种无关.
(1)求一个接种周期内出现抗体次数的分布列;
(2)已知每天接种一次花费100元,现有以下两种试验方案:
①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;
②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.
比较随机变量和的数学期望的大小.
【答案】(1)分布列答案见解析.(2)
【解析】
(1)由题意可知,随机变量服从二项分布,故,然后列出分布列即可
(2)根据题意分别算出和的期望即可.
(1)由题意可知,随机变量服从二项分布,
故.
则的分布列为
0 | 1 | 2 | 3 | |
(2)①设一个接种周期的接种费用为元,则可能的取值为200,300,
因为,,
所以.
所以三个接种周期的平均花费为.
②随机变量可能的取值为300,600,900,
设事件为“在一个接种周期内出现2次或3次抗体”,由(1)知,.
所以,
,
,
所以.
所以.
练习册系列答案
相关题目