题目内容
【题目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 , 半径是
【答案】(﹣2,﹣4);5
【解析】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆, ∴a2=a+2≠0,解得a=﹣1或a=2.
当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,
配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;
当a=2时,方程化为 ,
此时 ,方程不表示圆,
所以答案是:(﹣2,﹣4),5.
【考点精析】解答此题的关键在于理解圆的一般方程的相关知识,掌握圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.
练习册系列答案
相关题目