题目内容
【题目】正方体ABCD﹣A1B1C1D1中直线BC1与平面BB1D1D所成角的余弦值是
【答案】
【解析】解:以D为原点,AD为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD﹣A1B1C1D1中棱长为1,
则B(1,1,0),C1(0,1,1),D(0,0,0),D1(0,0,1),
=(﹣1,0,1), =(0,0,1), =(1,1,0),
设平面BB1D1D的法向量 =(x,y,z),
则 ,取x=1,得 =(1,﹣1,0),
设直线BC1与平面BB1D1D所成角为θ,
则sinθ= = = ,
∴cosθ= = ,
∴直线BC1与平面BB1D1D所成角的余弦值为 .
所以答案是: .
【考点精析】利用空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
练习册系列答案
相关题目