题目内容

.(本小题满分12分) 在公差不为零的等差数列和等比数列中,已知; 
(Ⅰ)的公差的公比
(Ⅱ)设,求数列的前项和
(Ⅰ)=5,
(Ⅱ)
本试题主要是考查了等比数列和等差数列的通项公式和求和的综合运用。
(1)因为题意有成等比,∴,即可以利用等比中项得到关系式
,从而的得到公差和公比的值。
(2)由(1)得:,故可知然后利用裂项相消的思想得到和式。
解:(Ⅰ)依题意有成等比,∴,即
整理得 : 又∵,∴=5…………………………3分
,从而得……………………………………6分
(Ⅱ)由(1)得:,
=n ∴, ……………9分
…………………………………12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网