题目内容

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
【答案】分析:(1)有条件得,求出f(1)=1,再由条件求出函数的对称轴,由函数的最小值列出方程求出a、b、c的值,代入解析式化简即可;
(2)由(1)求出g(x)化简后,求出函数的对称轴,再由二次函数的单调性和条件列出不等式,求出k的值;
(3)先假设存在,对f(x)配方后,再由分离常数法把条件转化为:,判断出函的单调性,求出最大值和最小值,结合t求出m的最大值.
解答:解:(1)∵在R上恒成立,
,即f(1)=1
∵f(x-4)=f(2-x),∴函数图象关于直线x=-1对称,

∵f(1)=1,∴a+b+c=1
又∵f(x)在R上的最小值为0,
∴f(-1)=0,即a-b+c=0,
,解得

(2)由(1)得,
∴g(x)对称轴方程为x=2k2-1,
∵g(x)在[-1,1]上是单调函数,
∴2k2-1≤-1或2k2-1≥1,
解得k≥1或k≤-1或k=0,
∴k的取值范围是k≥1或k≤-1或k=0.
(3)假设存在存在t∈R满足条件,
由(1)知
∴f(x+t)≤x?(x+t+1)2≤4x且x∈[1,m],
?在[1,m]上恒成立?
在[1,m]上递减,

在[1,m]上递减,

,∴
∵m>1,∴
∴m≤9,∴m的最大值为9.
点评:本题考查了二次函数的性质的综合应用,待定系数法求函数的解析式,以及分离常数法处理恒成立问题,第(3)问出现了两个未知数,注意结合点,考查了转化思想,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网