题目内容
设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.
(1)由已知对任意的x1、x2∈[-1,1],且x1≠x2,
都有
<0,从而x1-x2与f(x1)-f(x2)异号,
所以f(x)在[-1,1]上是减函数.
(2)因为f(x-c)的定义域是[c-1,c+1],f(x-c2)的定义域是[c2-1,c2+1],
因为以上两个集合的交集为空集,所以c2-1>c+1或c2+1<c-1解得:c>2或c<-1
(3)因为c2+1>c-1恒成立,有(2)问可知:当-1≤c≤2时,
f(x-c),f(x-c2)存在公共的定义域.
若c2-1≤c+1,即1≤c≤2或-1≤c≤0时,c2+1≥c+1,c2-1≥c-1,此时的交集是[c2-1,c+1],即为公共的定义域;
若0<c<1,则c2+1<c+1,c2-1<c-1,此时的交集是[c-1,c2+1],即为公共的定义域.
都有
f(x1)-f(x2) |
x1-x2 |
所以f(x)在[-1,1]上是减函数.
(2)因为f(x-c)的定义域是[c-1,c+1],f(x-c2)的定义域是[c2-1,c2+1],
因为以上两个集合的交集为空集,所以c2-1>c+1或c2+1<c-1解得:c>2或c<-1
(3)因为c2+1>c-1恒成立,有(2)问可知:当-1≤c≤2时,
f(x-c),f(x-c2)存在公共的定义域.
若c2-1≤c+1,即1≤c≤2或-1≤c≤0时,c2+1≥c+1,c2-1≥c-1,此时的交集是[c2-1,c+1],即为公共的定义域;
若0<c<1,则c2+1<c+1,c2-1<c-1,此时的交集是[c-1,c2+1],即为公共的定义域.
练习册系列答案
相关题目