题目内容

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 
分析:先由f(x)是定义在R上的奇函数,结合对称性变形为f(
1
2
+x)=f(
1
2
-x)?f(x)=f(1-x)
,f(-x)=f(1+x)=-f(x)
f(2+x)=-f(1+x)=f(x),再由f(0)=0求解.
解答:解:f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
1
2
对称,
∴f(-x)=-f(x),f(
1
2
+x)=f(
1
2
-x)?f(x)=f(1-x)

∴f(-x)=f(1+x)=-f(x)f(2+x)=-f(1+x)=f(x),
∴f(0)=f(1)=f(3)=f(5)=0,f(0)=f(2)=f(4)=0,
所以f(1)+f(2)+f(3)+f(4)+f(5)=0
故答案为:0
点评:本题主要考查函数的奇偶性及对称性以及主条件的变形与应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网