题目内容
【题目】已知中,,,,,分别是,的中点,将沿翻折,得到如图所示的四棱锥,且,设为的中点.
(1)证明:;
(2)求直线与平面所成角的的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)取的中点,连接,,得到四边形是平行四边形,得出,,从而,,证得平面,平面,进而利用线面垂直的判定定理,证得平面,即可得到.
(2)以为坐标原点,为轴,为轴,建立如图所示的空间直角坐标系,求得向量和平面的一个法向量,利用向量的夹角公式,即可求解.
(1)取的中点,连接,,可得,且,
所以四边形是平行四边形,所以,
因为,分别是,的中点,所以,
因为,所以,,
又因为,且,平面,
所以平面,所以平面,
因为平面,所以,
因为分别为的中点,故,
所以,又,,所以.
又因为,又,平面,所以平面,
又由平面,所以.
(2)由(1)知:平面,以为坐标原点,为轴,为轴,建立如图所示的空间直角坐标系,
因为,可得,
在中,,,,
可得,所以,,
所以点到轴的距离为1,
可得,,,,
则,,,
设平面的法向量为,
所以,解得,令,可得,
设直线与平面所成的角为.
则,
即直线与平面所成的角的正弦值为.
【题目】已知某快递公司收取快递费的标准是:重量不超过的包裹收费元;重量超过的包裹,在收费元的基础上,每超过(不足,按计算)需再收元.该快递公司承揽了一个工艺品厂家的全部玻璃工艺品包裹的邮寄事宜,该厂家随机统计了件这种包裹的两个统计数表如下:
表
包裹重量 | |||||
包裹数 | |||||
损坏件数 |
表
包裹重量 | |||||
出厂价(元件) | |||||
卖价(元件) |
估计该快递公司对每件包裹收取快递费的平均值;
将包裹重量落入各组的频率视为概率,该工艺品厂家承担全部运费,每个包裹只有一件产品,如果客户收到有损坏品的包裹,该快递公司每件按其出厂价的赔偿给厂家.现该厂准备给客户邮寄重量在区间和内的工艺品各件,求该厂家这两件工艺品获得利润的分布列和期望.