题目内容
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>0)的右焦点F,直线l0过点F且l0⊥x轴,l0与C相交于A,B两点,|AB|=$\frac{2\sqrt{3}}{3}$.(1)求椭圆C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:$\frac{{x}_{0}x}{{a}^{2}}+{y}_{0}$y=1与直线l0相交于点M,与直线l1:x=$\frac{3\sqrt{2}}{2}$相交于点N,证明:点P在C上移动时,$\frac{|MF|}{|NF|}$恒为定值,并求此定值.
分析 (1)由题意求出右焦点F的坐标,再求出点A的坐标代入椭圆C的方程求出a,即可求出椭圆C的方程;
(2)由(1)得求出右焦点F的坐标、直线l和l0的方程,分别联立直线方程后求出M、N的坐标,利用两点之间的距离公式、点P在椭圆上化简$\frac{|MF|}{|NF|}$即可.
解答 解:(1)由题意得,椭圆C的方程是$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>0),
∴右焦点F的坐标是($\sqrt{{a}^{2}-1}$,0),
∵直线l0过点F且l0⊥x轴,l0与C相交于A,B两点,
∴由|AB|=$\frac{2\sqrt{3}}{3}$得,A($\sqrt{{a}^{2}-1}$,$\frac{\sqrt{3}}{3}$),
代入$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1$得,$\frac{{a}^{2}-1}{{a}^{2}}+\frac{1}{3}=1$,解得a2=3,
∴椭圆C的方程是$\frac{{x}^{2}}{3}+{y}^{2}=1$;
证明:(2)由(1)得,右焦点F的坐标是($\sqrt{2}$,0),
且直线l的方程是$\frac{{x}_{0}x}{3}+{y}_{0}y=1$,直线l0的方程是x=$\sqrt{2}$,
由$\left\{\begin{array}{l}{\frac{{x}_{0}x}{3}+{y}_{0}y=1}\\{x=\sqrt{2}}\end{array}\right.$得,$\left\{\begin{array}{l}{x=\sqrt{2}}\\{y=\frac{1}{{y}_{0}}(1-\frac{\sqrt{2}}{3}{x}_{0})}\end{array}\right.$,
∴M的坐标是($\sqrt{2}$,$\frac{1}{{y}_{0}}(1-\frac{\sqrt{2}}{3}{x}_{0})$),
由$\left\{\begin{array}{l}{\frac{{x}_{0}x}{3}+{y}_{0}y=1}\\{x=\frac{3\sqrt{2}}{2}}\end{array}\right.$得,$\left\{\begin{array}{l}{x=\frac{3\sqrt{2}}{2}}\\{y=\frac{1}{{y}_{0}}(1-\frac{\sqrt{2}}{2}{x}_{0})}\end{array}\right.$,
∴N的坐标是($\frac{3\sqrt{2}}{2}$,$\frac{1}{{y}_{0}}(1-\frac{\sqrt{2}}{2}{x}_{0})$),
∵点P(x0,y0)(y0≠0)在椭圆C上,∴$\frac{{{x}_{0}}^{2}}{3}+{{y}_{0}}^{2}=1$,则${{y}_{0}}^{2}=1-\frac{{{x}_{0}}^{2}}{3}$,
∴$\frac{|MF|}{|NF|}$=$\sqrt{\frac{\frac{1}{{{y}_{0}}^{2}}(1-\frac{\sqrt{2}}{3}{x}_{0})^{2}}{\frac{1}{2}+\frac{1}{{{y}_{0}}^{2}}(1-\frac{\sqrt{2}}{2}{x}_{0})^{2}}}$=$\sqrt{\frac{2{(1-\frac{\sqrt{2}}{3}{x}_{0})}^{2}}{{{y}_{0}}^{2}+2{(1-\frac{\sqrt{2}}{2}{x}_{0})}^{2}}}$=$\sqrt{\frac{2(1-\frac{2\sqrt{2}}{3}{x}_{0}+\frac{2{{x}_{0}}^{2}}{9})}{1-\frac{{{x}_{0}}^{2}}{3}+2(1-\sqrt{2}{x}_{0}+\frac{{{x}_{0}}^{2}}{2})}}$
=$\sqrt{\frac{2(1-\frac{2\sqrt{2}}{3}{x}_{0}+\frac{2{{x}_{0}}^{2}}{9})}{3-2\sqrt{2}{x}_{0}+\frac{2{{x}_{0}}^{2}}{3}}}$=$\sqrt{\frac{2(1-\frac{2\sqrt{2}}{3}{x}_{0}+\frac{2{{x}_{0}}^{2}}{9})}{3(1-\frac{2\sqrt{2}}{3}{x}_{0}+\frac{{{2x}_{0}}^{2}}{9})}}$=$\frac{\sqrt{6}}{3}$,
∴点P在C上移动时,$\frac{|MF|}{|NF|}$恒为定值:$\frac{\sqrt{6}}{3}$.
点评 本题主要考查椭圆的方程与性质,点与椭圆位置关系,以及直线的交点坐标问题,考查化简、变形能力,属于中档题.
A. | y=$\sqrt{x}$ | B. | y=|sinx| | C. | y=cosx | D. | y=ex-e-x |
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |