题目内容
一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )
A.异面 | B.平行 | C.相交 | D.不确定 |
B
如图所示,直线a∥α,a∥β,α∩β=b,求证a∥b.只需考虑线面平行的性质定理及平行公理即可.
解:由a∥α得,经过a的平面与α相交于直线c,
则a∥c,
同理,设经过a的平面与β相交于直线d,
则a∥d,由平行公理得:c∥d,
则c∥β,又c?α,α∩β=b,所以c∥b,
又a∥c,所以a∥b.
故答案为B.
解:由a∥α得,经过a的平面与α相交于直线c,
则a∥c,
同理,设经过a的平面与β相交于直线d,
则a∥d,由平行公理得:c∥d,
则c∥β,又c?α,α∩β=b,所以c∥b,
又a∥c,所以a∥b.
故答案为B.
练习册系列答案
相关题目