题目内容
【题目】某工厂有两台不同机器A和B生产同一种产品各10万件,现从各自生产的产品中分别随机抽取二十件,进行品质鉴定,鉴定成绩的茎叶图如下所示:
该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.
(1)从等级为优秀的样本中随机抽取两件,记为来自B机器生产的产品数量,写出的分布列,并求的数学期望;
(2)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为B机器生产的产品比A机器生产的产品好;
A生产的产品 | B生产的产品 | 合计 | |
良好以上(含良好) | |||
合格 | |||
合计 |
(3)已知优秀等级产品的利润为12元/件,良好等级产品的利润为10元/件,合格等级产品的利润为5元/件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?
【答案】(1)见解析;(2)见解析;(3)见解析
【解析】分析:(1)先计算出样本中优秀的产品有2个来自A机器,3个来自B 机器,再写出x的分布列和期望. (2)先完成2×2列联表,再求出作出判断.(3)先计算出A、B机器每生产10万件的利润,再下结论.
详解:(1)从茎叶图可以知道,样本中优秀的产品有2个来自A机器,3个来自B 机器;
所以的可能取值为.
,,.
的分布列为:
0 | 1 | 2 | |
0.1 | 0.6 | 0.3 |
所以.
(2)由已知可得,列联表为
A生产的产品 | B生产的产品 | 合计 | |
良好以上 | 6 | 12 | 18 |
合格 | 14 | 8 | 22 |
合计 | 20 | 20 | 40 |
,
所以不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的机器有关.
(3)A机器每生产10万件的利润为万元,
B机器每生产10万件的利润为万元,
所以,
所以该工厂不会仍然保留原来的两台机器,应该会卖掉A机器,同时购买一台B机器.
【题目】甲、乙、丙三人去某地务工,其工作受天气影响,雨天不能出工,晴天才能出工.其计酬方式有两种,方式一:雨天没收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要选择其中一种计酬方式,并打算在下个月(天)内的晴天都出工,为此三人作了一些调查,甲以去年此月的下雨天数(天)为依据作出选择;乙和丙在分析了当地近年此月的下雨天数()的频数分布表(见下表)后,乙以频率最大的值为依据作出选择,丙以的平均值为依据作出选择.
8 | 9 | 10 | 11 | 12 | 13 | |
频数 | 3 | 1 | 2 | 0 | 2 | 1 |
(Ⅰ)试判断甲、乙、丙选择的计酬方式,并说明理由;
(Ⅱ)根据统计范围的大小,你觉得三人中谁的依据更有指导意义?
(Ⅲ)以频率作为概率,求未来三年中恰有两年,此月下雨不超过天的概率.