题目内容

【题目】已知椭圆的左、右焦点分别为为椭圆上不与左右顶点重合的任意一点,分别为的内心、重心,当轴时,椭圆的离心率为( )

A. B. C. D.

【答案】A

【解析】

结合图像,利用点坐标以及重心性质,得到G点坐标,再由题目条件轴,得到点横坐标,然后两次运用角平分线的相关性质得到的比值,再结合相似,即可求得点纵坐标,也就是内切圆半径,再利用等面积法建立关于的关系式,从而求得椭圆离心率.

如图,令点在第一象限(由椭圆对称性,其他位置同理),连接,显然点在上,连接并延长交轴于点,连接并延长交轴于点轴,过点垂直于轴于点

设点,则

因为的重心,所以

因为轴,所以点横坐标也为

因为的角平分线,

则有

又因为,所以可得

又由角平分线的性质可得,,而

所以得

所以

所以,即

因为

,解得,所以答案为A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网