题目内容
10.设数列{an}的通项公式为:an=n2+kn(n∈N+),若数列{an}是单调递增数列,则实数k的取值范围是( )A. | [-2,+∞) | B. | (-2,+∞) | C. | [-3,+∞) | D. | (-3,+∞) |
分析 根据数列递增得到an+1>an,利用不等式的性质即可得到结论.
解答 解:若{an}递增,则an+1>an,
即(n+1)2+k(n+1)>n2+kn,
则k>-(2n+1),
∵n∈N*,
∴2n+1≥3,
-(2n+1)≤-3,
则k>-3,
故选:D
点评 本题主要考查数列递增的应用,根据条件建立不等式是解决本题的关键.
练习册系列答案
相关题目
1.已知|$\overrightarrow{a}$|=2,$\overrightarrow{b}$为单位向量,$\overrightarrow{a}•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是( )
A. | -$\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | -1 |
18.下图是1,2两组各7名同学体重(单位:千克)数据的茎叶图.设1,2两组数据的平均数依次为$\overline{x_1}$和$\overline{x_2}$,标准差依次为s1和s2,那么( )
(注:标准差s=$\sqrt{\frac{1}{n}[{{({x_1}-\overline x)}^2}+{{({x_2}-\overline x)}^2}+…+{{({x_n}-\overline x)}^2}}$,其中$\overline{x_1}$为x1,x2,…,xn的平均数)
(注:标准差s=$\sqrt{\frac{1}{n}[{{({x_1}-\overline x)}^2}+{{({x_2}-\overline x)}^2}+…+{{({x_n}-\overline x)}^2}}$,其中$\overline{x_1}$为x1,x2,…,xn的平均数)
A. | $\overline{x_1}$<$\overline{x_2}$,s1<s2 | B. | $\overline{x_1}$<$\overline{x_2}$,s1>s2 | C. | $\overline{x_1}$>$\overline{x_2}$,s1>s2 | D. | $\overline{x_1}$>$\overline{x_2}$,s1<s2 |
19.在△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,下列条件不能推出B≤60°的是( )
A. | a,b,c成等比数列 | B. | a,b,c成等差数列 | C. | 1+2cos2B≥0 | D. | S≤$\frac{\sqrt{3}}{4}$(a2+c2-b2) |
20.在等差数列{an}中,2a2+a11=6,则数列{an}的前9项和等于( )
A. | 6 | B. | 12 | C. | 18 | D. | 25 |