题目内容
13.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色不全相同的概率是$\frac{8}{9}$.分析 用1减去3只球颜色全相同的概率,即为3只球颜色不全相同的概率.
解答 解:所有的取法共计有33=27种,而颜色全相同的取法只有3种(都是红球、都是黄球、都是白球),用1减去3只球颜色全相同的概率,即为3只球颜色不全相同的概率,故3只球颜色不全相同的概率为1-$\frac{3}{27}$=$\frac{8}{9}$.
故答案为:$\frac{8}{9}$.
点评 本题考查古典概型及其概率计算公式的应用,事件和它的对立事件概率之间的关系,属于基础题.
练习册系列答案
相关题目
4.已知a,b是正数,x=$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{2}}$,y=$\sqrt{a+b}$,则x,y的大小关系是( )
A. | x≥y | B. | x≤y | C. | x>y | D. | x<y |
8.过抛物线y2=2px的焦点F作直线交抛物线于A、B两点,再过A、B分别作抛物线的切线l1,l2,设l1与l2的交点为P(x0,y0),则x0的值( )
A. | 0 | B. | -p | C. | -$\frac{p}{2}$ | D. | 不确定 |
12.中百超市为了回馈广大顾客多年来对本超市的光顾与厚爱,特定在2015年元旦期间矩形特大优惠活动,凡购买商品达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2的面积是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则消费88元以上者抽中一等奖的概率是( )
A. | $\frac{1}{40}$ | B. | $\frac{1}{121}$ | C. | $\frac{1}{364}$ | D. | $\frac{1}{1093}$ |